题目内容

15.已知函数f(x)=|x+1|-2|x-a|,a>0.
(Ⅰ)当a=1时,求不等式f(x)>1的解集;
(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.

分析 (Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f(x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a的取值范围.

解答 解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|-2|x-1|>1,
即$\left\{\begin{array}{l}{x<-1}\\{-x-1-2(1-x)>1}\end{array}\right.$ ①,或$\left\{\begin{array}{l}{-1≤x<1}\\{x+1-2(1-x)>1}\end{array}\right.$ ②,
或$\left\{\begin{array}{l}{x≥1}\\{x+1-2(x-1)>1}\end{array}\right.$③.
解①求得x∈∅,解②求得$\frac{2}{3}$<x<1,解③求得1≤x<2.
综上可得,原不等式的解集为($\frac{2}{3}$,2).
(Ⅱ)函数f(x)=|x+1|-2|x-a|=$\left\{\begin{array}{l}{x-1-2a,x<-1}\\{3x+1-2a,-1≤x≤a}\\{-x+1+2a,x>a}\end{array}\right.$,
由此求得f(x)的图象与x轴的交点A ($\frac{2a-1}{3}$,0),
B(2a+1,0),
故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),
由△ABC的面积大于6,
可得$\frac{1}{2}$[2a+1-$\frac{2a-1}{3}$]•(a+1)>6,求得a>2.
故要求的a的范围为(2,+∞).

点评 本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网