ÌâÄ¿ÄÚÈÝ

11£®Èçͼ£¬¸ø¶¨Á½¸öƽÃæÏòÁ¿$\overrightarrow{{O}{A}}$ºÍ$\overrightarrow{{O}{B}}$£¬ËüÃǵļнÇΪ120¡ã£¬µãCÔÚÒÔOΪԲÐĵÄÔ²»¡ABÉÏ£¬ÇÒ$\overrightarrow{{O}C}=x\overrightarrow{{O}{A}}+y\overrightarrow{{O}{B}}$£¨ÆäÖÐx£¬y¡ÊR£©£¬ÔòÂú×ãy-x¡Ý$\frac{{\sqrt{3}}}{3}$µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{4}$B£®$\frac{¦Ð}{3}$C£®$\frac{1}{3}$D£®$\frac{1}{4}$

·ÖÎö ¸ù¾ÝÌâÒ⣬½¨Á¢×ø±êϵ£¬Éè³öA£¬BµãµÄ×ø±ê£¬²¢Éè¡ÏAOC=¦Á£¬ÔòÓÉ$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$µÃx£¬yµÄÖµ£¬´Ó¶øÇóµÃy-xµÄ±í´ïʽ£¬½áºÏÕýÏÒº¯ÊýµÄÐÔÖÊ¿ÉÇóÂú×ãÌõ¼þµÄ½Ç¦ÁµÄ·¶Î§£¬ÀûÓü¸ºÎ¸ÅÐ͵ĸÅÂʹ«Ê½¼´¿ÉµÃµ½½áÂÛ£®

½â´ð ½â£º½¨Á¢ÈçͼËùʾµÄ×ø±êϵ£¬
ÔòA£¨1£¬0£©£¬B£¨cos120¡ã£¬sin120¡ã£©£¬¼´B£¨-$\frac{1}{2}$£¬$\frac{\sqrt{3}}{2}$£©£¬
Éè¡ÏAOC=¦Á£¬Ôò$\overrightarrow{OC}$=£¨cos¦Á£¬sin¦Á£©
¡ß$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$=£¨x£¬0£©+£¨-$\frac{1}{2}y$£¬$\frac{\sqrt{3}}{2}y$£©=£¨cos¦Á£¬sin¦Á£©£®
¡à$\left\{\begin{array}{l}{x-\frac{1}{2}y=cos¦Á}\\{\frac{\sqrt{3}y}{2}=sin¦Á}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{x=\frac{sin¦Á}{\sqrt{3}}+cos¦Á}\\{y=\frac{2sin¦Á}{\sqrt{3}}}\end{array}\right.$£¬
¡ày-x=$\frac{2sin¦Á}{\sqrt{3}}$-$\frac{sin¦Á}{\sqrt{3}}$-cos¦Á=$\frac{sin¦Á}{\sqrt{3}}$-cos¦Á=$\frac{\sqrt{3}}{3}$sin¦Á-cos¦Á=$\frac{2\sqrt{3}}{3}$£¨$\frac{1}{2}$sin¦Á-$\frac{\sqrt{3}}{2}$cos¦Á£©=$\frac{2\sqrt{3}}{3}$sin£¨¦Á-60¡ã£©£®
¡ß0¡ã¡Ü¦Á¡Ü120¡ã£®
¡à-60¡ã¡Ü¦Á-60¡ã¡Ü60¡ã£®
µ±y-x¡Ý$\frac{{\sqrt{3}}}{3}$µÄ£¬¼´$\frac{2\sqrt{3}}{3}$sin£¨¦Á-60¡ã£©¡Ý$\frac{{\sqrt{3}}}{3}$£¬
Ôòsin£¨¦Á-60¡ã£©¡Ý$\frac{1}{2}$£¬
¡à30¡ã¡Ü¦Á-60¡ã¡Ü60¡ã£¬
¼´90¡ã¡Ü¦Á¡Ü120¡ã£¬
¡àÂú×ãy-x¡Ý$\frac{{\sqrt{3}}}{3}$µÄ¸ÅÂÊP=$\frac{120¡ã-90¡ã}{120¡ã}$=$\frac{30}{120}$=$\frac{1}{4}$£¬
¹ÊÑ¡£ºD

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¼¸ºÎ¸ÅÐ͵ļÆË㣬¸ù¾ÝÈý½Çº¯ÊýµÄ¶ÔӦת»¯Îª½Ç¶ÈÖ®¼äµÄ¹ØϵÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£¬±¾Ìâ×ÛºÏÐÔ½ÏÇ¿£¬ÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø