题目内容
【题目】在我国古代著名的数学专著《九章算术》里有﹣段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里:驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢, 问:需日相逢.
【答案】9
【解析】解:由题意知,良马每日行的距离成等差数列, 记为{an},其中a1=103,d=13;
驽马每日行的距离成等差数列,
记为{bn},其中b1=97,d=﹣0.5;
设第m天相逢,则a1+a2+…+am+b1+b2+…+bm
=103m+ +97m+ =2×1125,
解得:m=9.
故答案为:9.
良马每日行的距离成等差数列,记为{an},其中a1=103,d=13;驽马每日行的距离成等差数列,记为{bn},其中b1=97,d=﹣0.5.求和即可得到答案.
练习册系列答案
相关题目
【题目】小王为了锻炼身体,每天坚持“健步走”,并用计步器进行统计.小王最近8天“健步走”步数的频数分布直方图(图1)及相应的消耗能量数据表(表1)如下:
健步走步数(前步) | 16 | 17 | 18 | 19 |
消耗能量(卡路里) | 400 | 440 | 480 | 520 |
(Ⅰ)求小王这8天“健步走”步数的平均数;
(Ⅱ)从步数为17千步,18千步,19千步的几天中任选2天,求小王这2天通过“健步走”消耗的能量和不小于1000卡路里的概率.