题目内容

【题目】已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A= a.
(1)求
(2)若c2=a2+ b2 , 求角C.

【答案】
(1)解:△ABC中,asinAsinB+bcos2A= a,

由正弦定理化简得:sin2AsinB+sinBcos2A= sinA,

即sinB(sin2A+cos2A)= sinA,

∴sinB= sinA,

再由正弦定理得:b= a,

=


(2)解:由(1)可得b= a,

c2=a2+ b2=a2+ × a2= a2

由余弦定理可得:

cosC= = =

由C为三角形内角,可得∠C=


【解析】(Ⅰ)利用正弦定理化简已知的等式,整理后利用同角三角函数间的基本关系化简,得到sinB=2sinA, 再利用正弦定理化简,即可得到所求式子的值;(2)由余弦定理可求cosC的值,结合C的范围即可得解.
【考点精析】根据题目的已知条件,利用余弦定理的定义的相关知识可以得到问题的答案,需要掌握余弦定理:;;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网