题目内容
【题目】已知函数f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分图象如图.
(1)求f(x)的解析式;
(2)将函数y=f(x)的图象上所有点的纵坐标不变,横坐标缩短为原来的 倍,再将所得函数图象向右平移 个单位,得到函数y=g(x)的图象,求g(x)的单调递增区间.
【答案】
(1)解:根据f(x)的图象可得 T= × = ﹣ ,∴ω=1.
根据五点法作图可得 1× +φ= ,求得 φ= .
再把(0,1)代入函数的解析式可得 Asin =1,求得A=2,故f(x)=2sin(x+ ).
(2)解:将函数y=f(x)的图象上所有点的纵坐标不变,横坐标缩短为原来的 倍,
可得y=2sin(2x+ )的图象;
再将所得函数图象向右平移 个单位,得到函数y=g(x)=2sin[2(x﹣ )+ ]=2sin(2x﹣ )的图象.
令2kπ﹣ ≤2x﹣ ≤2kπ+ ,求得 kπ﹣ ≤x≤kπ+ ,
故g(x)的增区间为[kπ﹣ ,kπ+ ],k∈z.
【解析】(1)由周期求出ω,由五点法作图求出φ的值,再把(0,1)代入函数的解析式求得A的值,可得函数f(x)的解析式.(2)由题意根据函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,令2kπ﹣ ≤2x﹣ ≤2kπ+ ,求得x的范围,可得g(x)的增区间.
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回归直线方程 = x+ ,其中 =﹣20, = ﹣
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入﹣成本)
【题目】某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:
xi(月) | 1 | 2 | 3 | 4 | 5 |
yi(千克) | 0.5 | 0.9 | 1.7 | 2.1 | 2.8 |
(1)在给出的坐标系中,画出关于x,y两个相关变量的散点图.
(2)请根据上表提供的数据,用最小二乘法求出变量y关于变量x的线性回归直线方程 .
(3)预测饲养满12个月时,这种鱼的平均体重(单位:千克)
(参考公式: = , )