题目内容
【题目】如图,F1,F2分别是椭圆C:的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.
(1)求椭圆C的离心率;
(2)已知△AF1B的面积为40,求a,b的值.
【答案】(1);(2).
【解析】(1)由题意可知,△AF1F2为等边三角形,a=2c,所以e=.
(2)方法一:a2=4c2,b2=3c2,直线AB的方程为y=-(x-c),
将其代入椭圆方程3x2+4y2=12c2,得B,
所以|AB|=..
由S△AF1B=|AF1|·|AB|·sin∠F1AB=a·c·= a2=40,
解得a=10,b=5.
方法二:设|AB|=t.因为|AF2|=a,所以|BF2|=t-a,
由椭圆定义|BF1|+|BF2|=2a可知,|BF1|=3a-t,
再由余弦定理(3a-t)2=a2+t2-2atcos 60°可得,t=a,
由S△AF1B=aa=a2=40知,a=10,b=5.
【题目】某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[21.7,22.3](单位:cm)之间,把零件尺寸在[21.9,22.1)的记为一等品,尺寸在[21.8,21.9)∪[22.1,22.2)的记为二等品,尺寸在[21.7,21.8)∪[22.2,22.3]的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示.
P(K2≥k0) | 0.10 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
附:
(1)根据上述数据完成下列2×2列联表,根据此数据,你认为选择不同的工艺与生产出一等品是否有关?
甲工艺 | 乙工艺 | 总计 | |
一等品 | |||
非一等品 | |||
总计 |
(2)以上述各种产品的频率作为各种产品发生的概率,若一等品、二等品、三等品的单件利润分别为30元、20元、15元,你认为以后该工厂应该选择哪种工艺生产该种零件?请说明理由.