题目内容
设函数f(x)在R上可导,其导函数为f′(x),且函数y=(2-x)f′(x)的图像如图所示,则下列结论中一定成立的是( )
A.函数f(x)有极大值f(1)和极小值f(-1) |
B.函数f(x)有极大值f(1)和极小值f(2) |
C.函数f(x)有极大值f(2)和极小值f(1) |
D.函数f(x)有极大值f(-1)和极小值f(2) |
A
由函数y=(2-x)f′(x)的图像可知,方程f′(x)=0有两个实根x=-1,x=1,且在(-∞,-1)上f′(x)<0,在(-1,1)上f′(x)>0,在(1,2)上f′(x)<0,在(2,+∞)上f′(x)<0.所以函数f(x)有极大值f(1)和极小值f(-1).
练习册系列答案
相关题目