题目内容

(本小题满分16分)设函数fx)=x4bx2cxd,当xt1时,fx)有极小值.
(1)若b=-6时,函数fx)有极大值,求实数c的取值范围;
(2)在(1)的条件下,若存在实数c,使函数fx)在闭区间[m-2,m+2]上单调递增,求实数m的取值范围;
(3)若函数fx)只有一个极值点,且存在t2∈(t1t1+1),使f ′(t2)=0,证明:函数gx)=fx)-x2t1x在区间(t1t2)内最多有一个零点.
(1)-16<c<16.(2)-2<m<0,或m>4.(3)同解析
(1)因为 fx)=x4bx2cxd
所以hx)=f ′(x)=x3-12xc.……2分
由题设,方程hx)=0有三个互异的实根.
考察函数hx)=x3-12xc,则h ′(x)=0,得x=±2.
x
(-∞,-2)
-2
(-2,2)
2
(2,+∞)
h ′(x

0

0

hx

c+16 (极大值)

c-16( 极小值)

所以 故-16<c<16. ………………………………………………5分
(2)存在c∈(-16,16),使f ′(x)≥0,即x3-12x≥-c,  (*)
所以x3-12x>-16,
即(x-2)2x+4)>0(*)在区间[m-2,m+2]上恒成立. …………7分
所以[m-2,m+2]是不等式(*)解集的子集.
所以m-2>2,即-2<m<0,或m>4. ………………………9分
(3)由题设,可得存在αβ∈R,
使f ′(x)=x3+2bxc=(xt1)(x2αxβ),
x2αxβ≥0恒成立.又f´(t2)=0,且在xt2两侧同号,
所以f´(x) =(xt1)(xt22
另一方面,
g ′(x)=x3+(2b-1)xt1cx3+2bxc-(xt1)=(xt1)[(xt22-1].
因为 t1 < x < t2,且 t2t1<1,所以-1< t1t2 < xt2 <0.所以 0<(xt22<1,
所以(xt22-1<0.
xt1>0,所以g ′(x)<0,所以gx)在(t1t2)内单调减.
从而gx)在(t1t2)内最多有一个零点.…………………………………16分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网