题目内容
已知椭圆C1与双曲线C2有相同的焦点F1、F2,点P是C1与C2的一个公共点,是一个以PF1为底的等腰三角形,C1的离心率为则C2的离心率为 。
3
解析
已知抛物线C:y2=2x,O为坐标原点,经过点M(2,0)的直线l交抛物线于A,B两点,P为抛物线C上一点.(Ⅰ)若直线l垂直于x轴,求|﹣|的值;(Ⅱ)求三角形OAB的面积S的取值范围.
定义:我们把椭圆的焦距与长轴的长度之比即,叫做椭圆的离心率.若两个椭圆的离心率相同,称这两个椭圆相似.(1)判断椭圆与椭圆是否相似?并说明理由;(2)若椭圆与椭圆相似,求的值;(3)设动直线与(2)中的椭圆交于两点,试探究:在椭圆上是否存在异于的定点,使得直线的斜率之积为定值?若存在,求出定点的坐标;若不存在,说明理由.
如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.(1)求椭圆C的方程;(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
点,点,动点满足,则点的轨迹方程是
双曲线的渐近线方程是
已知点是双曲线上除顶点外的任意一点,分别为左、右焦点,为半焦距,的内切圆与切于点,则 .
设椭圆的右焦点与抛物线的焦点相同,离心率为,则此椭圆的方程为_▲__
椭圆的离心率为,若直线与其一个交点的横坐标为,则的值为