题目内容

如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.
(1)求椭圆C的方程;
(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

(1);(2)P(,±).

解析试题分析:(1)求椭圆标准方程,一般利用待定系数法,利用两个独立条件确定a,b的值. 设椭圆C的方程为,由已知,得,∴∴b=.所以椭圆C的方程为.(2)等腰三角形这个条件,是不确定的,首先需要确定腰. 由=e=,得PF=PM.∴PF≠PM.若PF=FM,则PF+FM=PM,与“三角形两边之和大于第三边”矛盾,∴PF不可能与FM相等.因此只有FM=PM,然后结合点在椭圆上条件进行列方程求解:设P(x,y)(x≠±2),则M(4,y).∴=4-x,
∴9+y2=16-8x+x2,又由,得y2=3-x2.∴9+3-x2=16-8x+x2,∴x2-8x+4=0.∴7x2-32x+16=0.∴x=或x=4.∵x∈(-2,2),∴x=.∴P(,±).综上,存在点P(,±),使得△PFM为等腰三角形.
试题解析:解:(1)设椭圆C的方程为
由已知,得,∴,∴b=.所以椭圆C的方程为
(2)由=e=,得PF=PM.∴PF≠PM.
①若PF=FM,则PF+FM=PM,与“三角形两边之和大于第三边”矛盾,
∴PF不可能与FM 相等.
②若FM=PM,设P(x,y)(x≠±2),则M(4,y).∴=4-x,
∴9+y2=16-8x+x2,又由,得y2=3-x2.∴9+3-x2=16-8x+x2
x2-8x+4=0.∴7x2-32x+16=0.∴x=或x=4.∵x∈(-2,2),∴x=
∴P(,±).综上,存在点P(,±),使得△PFM为等腰三角形.
考点:椭圆方程,椭圆第二定义

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网