题目内容

椭圆的一条弦被平分,那么这条弦所在的直线方程是  (   )

A.B.
C.D.

D

解析试题分析:根据中点弦问题,可知设这条弦的两端点为A(x1,y1),B(x2,y2),斜率为k,,那么则代入方程中,有
,两式相减再变形得
又弦中点为(4,2),故k=-,故这条弦所在的直线方程y-2=-(x-4),整理得x+2y-8=0;
故选D.
考点:本题主要考查了直线与椭圆的位置关系的运用。
点评:解决该试题的关键是用“点差法”解题是圆锥曲线问题中常用的方法.主要是解决直线与圆锥曲线中中点问题,和中点弦的问题的运用。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网