题目内容
【题目】已知函数,,.
当时,求函数的单调区间,并求出其极值;
若函数存在两个零点,求k的取值范围.
【答案】(1)单调增区间为(-∞,-1)和(0,+∞);单调减区间为(-1,0).极大值为;极小值为f(0)=0.(2)(-∞,0).
【解析】
(1)先求导数,再求导函数零点,根据导函数符号变化规律,确定单调区间与极值,(2)先求导数,再结合导函数零点,根据k的值分五种情况分类讨论,结合对应函数单调性以及极值正负确定零点个数,即得结果.
解:(1)当k=1时,,
∴f'(x)=(x+1)ex-(x+1)=(x+1)(ex-1),
故x∈(-∞,-1)时,f′(x)>0,f(x)为增函数;
x∈(-1,0)时,f′(x)<0,f(x)为减函数;
x∈(0,+∞)时,f'(x)>0,f(x)为增函数.
故函数f(x)的单调增区间为(-∞,-1)和(0,+∞);单调减区间为(-1,0).
所以函数的极大值为;极小值为f(0)=0.
(2)由已知,,g(x)=kex-x,
∴,
∴F'(x)=kxex-x=x(kex-1).
①当k<0时,F(x)在(-∞,0)为增,在(0,+∞)为减,且注意到F(0)=-k>0,函数F(x)的图象两边向下无限伸展,故此时F(x)存在两个零点,适合题意.
②当k=0时,在(-∞,0)为增,在(0,+∞)为减,且F(0)=0,故此时F(x)只有一个零点.
③当k=1时,,故函数(-∞,+∞)为增,易知函数F(x)只有一个零点.
④当k∈(0,1)时,,F(x)在(-∞,0)为增,为减,为增,且F(0)=-k<0易知F(x)只有一个零点.
⑤当k∈(1,+∞)时,,F(x)在为增,为减,(0,+∞)为增,且,F(0)=-k<0易知F(x)只有一个零点.
综上,k的取值范围是(-∞,0).
【题目】禽流感一直在威胁我们的生活,某疾病控制中心为了研究禽流感病毒繁殖个数(个)随时间(天)变化的规律,收集数据如下:
天数 | 1 | 2 | 3 | 4 | 5 | 6 |
繁殖个数 | 6 | 12 | 25 | 49 | 95 | 190 |
作出散点图可看出样本点分布在一条指数型函数的周围.
保留小数点后两位数的参考数据:
,,,,,,,,其中
(1)求出关于的回归方程(保留小数点后两位数字);
(2)已知,估算第四天的残差.
参考公式:
【题目】某家具公司生产甲、乙两种书柜,制柜需先制白胚再油漆,每种柜的制造白胚工时数、油漆工时数的有关数据如下:
工艺要求 | 产品甲 | 产品乙 | 生产能力(工时/天) |
制白胚工时数 | 6 | 12 | 120 |
油漆工时数 | 8 | 4 | 64 |
单位利润 | 20元 | 24元 |
则该公司合理安排这两种产品的生产,每天可获得的最大利润为______.