题目内容
14.已知实数a,b,则“2a>2b”是“log2a>log2b”的( )A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
分析 分别解出2a>2b,log2a>log2b中a,b的关系,然后根据a,b的范围,确定充分条件,还是必要条件.
解答 解:2a>2b⇒a>b,
当a<0或b<0时,不能得到log2a>log2b,
反之由log2a>log2b即:a>b>0可得2a>2b成立.
故选:B.
点评 本题考查对数函数的单调性与特殊点,必要条件、充分条件与充要条件的判断,是基础题.
练习册系列答案
相关题目
5.某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人.
(Ⅰ)试问在抽取的学生中,男、女生各有多少人?
(Ⅱ)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分几)的把握认为“身高与性别有关”?
(Ⅲ)在上述80名学生中,从身高在170~175cm之间的学生中按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
参考数据:
(Ⅰ)试问在抽取的学生中,男、女生各有多少人?
(Ⅱ)根据频率分布直方图,完成下列的2×2列联表,并判断能有多大(百分几)的把握认为“身高与性别有关”?
≥170cm | <170cm | 总计 | |
男生身高 | |||
女生身高 | |||
总计 |
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
参考数据:
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 5.024 | 6.635 | 7.879 | 10.828 |
9.深圳某商场为使销售空调和冰箱获得的总利润达到最大,对即将出售的空调和冰箱相关数据进行调查,得出下表:
问:该商场怎样确定空调或冰箱的月供应量,才能使总利润最大?最大利润是多少?
资金 | 每台空调或冰箱所需资金(百元) | 月资金供应数量 (百元) | |
空调 | 冰箱 | ||
成本 | 30 | 20 | 300 |
工人工资 | 5 | 10 | 110 |
每台利润 | 6 | 8 |
4.a=${∫}_{0}^{2}$xdx,b=${∫}_{0}^{2}$exdx,c=${∫}_{0}^{2}$sinxdx,则a、b、c大小关系是( )
A. | a<c<b | B. | a<b<c | C. | c<b<a | D. | c<a<b |