题目内容
【题目】已知.
(1)当时,求不等式的解集;
(2)若时,不等式恒成立,求a的取值范围.
【答案】(1) .(2) .
【解析】
(1)将a=1代入f(x)中,去绝对值后分别解不等式即可;
(2)x∈(0,1)时,不等式f(x)<x+2恒成立等价于当x∈(0,1)时,|ax-1|<1恒成立,然后分a≤0和a>0讨论即可.
解:(1)解法1:当时,不等式可化简为.
当时,,解得,所以;
当时,,,无解;
当时,,解得,所以﹒
综上,不等式的解集为.
解法2:当时,
当时,,解得,所以;
当时,,无解;
当时,,解得,所以.
综上,不等式的解集为.
(2)解法1:当时,不等式可化简为.
令,则的图像为过定点斜率为a的一条直线,
数形结合可知,当时,在上恒成立.
所以,所求a的取值范围为
解法2:当时,不等式可化简为.
由不等式的性质得或,
即或.
当时,,不等式不恒成立;
为使不等式恒成立,则.
综上,所求a的取值范围为.
练习册系列答案
相关题目
【题目】年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由年底的下降到年底的,创造了人类减贫史上的的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,年至年我国贫困发生率的数据如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
贫困发生率 | 10.2 | 8.5 | 7.2 | 5.7 | 4.5 | 3.1 | 1.4 |
(1)从表中所给的个贫困发生率数据中任选两个,求两个都低于的概率;
(2)设年份代码,利用线性回归方程,分析年至年贫困发生率与年份代码的相关情况,并预测年贫困发生率.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
(的值保留到小数点后三位)