题目内容
【题目】某人承揽一项业务,需做文字标牌4个,绘画标牌5个,现有两种规格的原料,甲种规格每张3m2,可做文字标牌1个,绘画标牌2个,乙种规格每张2m2,可做文字标牌2个,绘画标牌1个,求两种规格的原料各用多少张,才能使总的用料面积最小?
【答案】使用甲种规格原料2张,乙种规格原料1张,可使总的用料面积最小.
【解析】
本题考查的知识点是简单的线性规划的应用,根据已知条件中解:需要甲种原料x张,乙种原料y张,则可做文字标牌(x+2y)个,绘画标牌(2x+y)个,由题意得出约束条件,及目标函数,然后利用线性规划,求出最优解.
解:设需要甲种原料x张,乙种原料y张,
则可做文字标牌(x+2y)个,绘画标牌(2x+y)个.
由题意可得:
所用原料的总面积为z=3x+2y,作出可行域如图,
在一组平行直线3x+2y=t中,经过可行域内的点且到原点距离最近的直线
过直线2x+y=5和直线x+2y=4的交点(2,1),∴最优解为:x=2,y=1
∴使用甲种规格原料2张,乙种规格原料1张,可使总的用料面积最小.
练习册系列答案
相关题目