题目内容

设m∈R,在平面直角坐标系中,已知向量
a
=(mx,y+1)
,向量
b
=(x,y-1)
a
b
,动点M(x,y)的轨迹为E.求轨迹E的方程,并说明该方程所表示曲线的形状.
∵向量
a
=(mx,y+1)
,向量
b
=(x,y-1)

a
b
,得
a
b
=mx2+y2-1=0
,即mx2+y2=1.
当m=0时,方程表示两直线,方程为y=±1;
当m=1时,方程表示的是圆,方程为x2+y2=1;
当0<m<1时,方程表示焦点在x轴上的椭圆;
当m>1时,方程表示焦点在y轴上的椭圆;
当m<0时,方程表示焦点在y轴上的双曲线.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网