题目内容
在三棱锥中,,是等腰直角三角形,,为中点. 则与平面所成的角等于( )
A. | B. | C. | D. |
B
试题分析:先作PO⊥平面ABC,垂足为O,根据条件可证得点O为三角形ABC的外心,从而确定点O为AC的中点,然后证明BO是面PAC的垂线,从而得到∠BEO为BE与平面PAC所成的角,在直角三角形BOE中求解即可。
解: 如图:
作PO⊥平面ABC,垂足为O,则∠POA=∠POB=∠POC=90°,,而PA=PB=PC,PO是△POA、△POB、△POC的公共边,∴△POA≌△POB≌△POC,∴AO=BO=CO,则点O为三角形ABC的外心,∵△ABC是等腰直角三角形,∠ABC=90°,∴点O为AC的中点,则BO⊥AC,而PO⊥BO,PO∩AC=O,∴BO⊥平面PAC,连接OE,∴∠BEO为BE与平面PAC所成的角,∵点O为AC的中点,E为PC中点,PA=PB=PC=AC=1,ABC是等腰直角三角形,∠ABC=90°,∴OE为中位线,且OE=,BO=又∵∠BOE=90°,∴∠BEO=45°即BE与平面PAC所成的角的大小为45°,故选B.
点评:本题主要考查了三角形的外心的概念,以及直线与平面所成角和三角形全等等有关知识,同时考查了推理能力,属于中档题.
练习册系列答案
相关题目