题目内容
(满分12分)如右图,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中点。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240050487866676.jpg)
(Ⅰ)求证:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240050487866676.jpg)
(Ⅰ)求证:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。
(1)连
交
于点
,连
.
由
是
的中点,
是
的中点,得到
,推出
∥平面
.
(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048802422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048817437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048833318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048848408.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048833318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048802422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048895315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048911402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048926626.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048942429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048958502.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048973428.png)
试题分析:(1)证明:连
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048802422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048817437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048833318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048848408.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048833318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048802422.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048895315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048911402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048926626.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049145446.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048958502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049176516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048958502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048942429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048958502.png)
(2)法一:设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049238532.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049254531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049270584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049285610.png)
作
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049504586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049519386.png)
∵平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048958502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049566516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049706429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048958502.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049738611.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049753526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049784576.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049800551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049816710.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049847543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240050498621571.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240050498781571.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049784576.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048973428.png)
解法二:如图,建立空间直角坐标系.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240050499566928.jpg)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049972515.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049987696.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005050003577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005050018677.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005050034783.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005050050850.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005050081850.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005050096845.png)
设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048958502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005050128671.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240050501431403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005050159644.png)
设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005050174465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005050190652.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240050502061350.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005050237678.png)
记二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049784576.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005050268297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240050502991641.png)
即二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005049784576.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005048973428.png)
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,应用空间向量,使问题解答得以简化。本解答提供了两种解法,相互对比,各有优点。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目