题目内容

(本小题满分13分)如图,正三棱柱中,D是BC的中点,

(Ⅰ)求证:;(Ⅱ)求证:;(Ⅲ)求三棱锥的体积.
(1)根据三棱柱中BB1⊥平面ABC,结合AD⊥BD,根据三垂线定理得,AD⊥B1D,得到证明。
(2)要证明线面平行,关键是对于DE∥A1C.的证明。
(3)

试题分析:(Ⅰ)证明:∵ABC—A1B1C1是正三棱柱,∴BB1⊥平面ABC,∴BD是B1D在平面ABC上的射影在正△ABC中,∵D是BC的中点,∴AD⊥BD,根据三垂线定理得,AD⊥B1D
(Ⅱ)解:连接A1B,设A1B∩AB1 = E,连接DE.∵AA1=AB ∴四边形A1ABB1是正方形,∴E是A1B的中点,又D是BC的中点,∴DE∥A1C. ………………………… 7分∵DE平面AB1D,A1C平面AB1D,∴A1C∥平面AB1D. ……………………9分 
(Ⅲ)  ……13分
点评:解决该试题的关键是能利用线面平行的判定定理,以及面面垂直的性质定理来证明线线垂直,同时结合体积公式计算,属于基础题。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网