ÌâÄ¿ÄÚÈÝ

12£®ÒÑÖªº¯Êýf£¨x£©=x2-ax+a£¨a¡ÊR£©Í¬Ê±Âú×㣺¢Ù²»µÈʽf£¨x£©¡Ü0 µÄ½â¼¯ÓÐÇÒÖ»ÓÐÒ»¸öÔªËØ£»¢ÚÔÚ¶¨ÒåÓòÄÚ´æÔÚ0£¼x1£¼x1£¬Ê¹µÃ²»µÈʽf£¨x1£©£¾f£¨x2£©³ÉÁ¢£®ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn=f£¨n£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ¼°$\sum_{i=1}^{n+2}$$\frac{1}{{a}_{i}{a}_{i+1}}$µÄÖµ£»
£¨2£©Éè¸÷Ïî¾ù²»ÎªÁãµÄÊýÁÐ{cn}ÖУ¬ËùÓÐÂú×ãcici+1µÄÕýÕûÊýiµÄ¸öÊý³ÆΪÕâ¸öÊýÁÐ{cn}µÄ±äºÅÊý£¬Áî cn=1-$\frac{a}{{a}_{n}}$£¬nΪÕýÕûÊý£¬ÇóÊýÁÐ{cn}µÄ±äºÅÊý£®

·ÖÎö £¨1£©Í¨¹ýf£¨x£©¡Ü0µÄ½â¼¯ÓÐÇÒÖ»ÓÐÒ»¸öÔªËØ¿ÉÖª·½³Ìx2-ax+a=0Öеġ÷=a2-4a=0£¬½ø¶ø¿ÉÖªSn=n2-4n+4£¬ÀûÓÃan+1=Sn+1-Sn¼ÆËã¿ÉÖªÊýÁеÄͨÏʽ£¬Í¨¹ýÁÑÏî¿ÉÖª$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{2}$£¨$\frac{1}{2n-5}$-$\frac{1}{2n-3}$£©£¨n¡Ý2£©£¬²¢ÏîÏà¼Ó¼´µÃ½áÂÛ£»
£¨2£©Í¨¹ý£¨1£©¿ÉÖªcn=$\left\{\begin{array}{l}{-3£¬}&{n=1}\\{1-\frac{4}{2n-5}£¬}&{n¡Ý2}\end{array}\right.$£¬Í¨¹ýµ±n¡Ý2ʱ½â²»µÈʽcn•cn+1£¼0¿ÉÖªn=2»òn=4£¬µ±n=1ʱҲÓÐcn•cn+1£¼0£¬½ø¶ø¿ÉµÃ½áÂÛ£®

½â´ð ½â£º£¨1£©¡ßf£¨x£©¡Ü0µÄ½â¼¯ÓÐÇÒÖ»ÓÐÒ»¸öÔªËØ£¬
¡àx2-ax+a=0Öеġ÷=a2-4a=0£¬
¡àa=0»òa=4£¬
µ±a=0ʱ£¬º¯Êýf£¨x£©=x2ÔÚ£¨0£¬+¡Þ£©ÉϵÝÔö£¬´Ëʱ²»Âú×ãÌõ¼þ¢Ú£¬
¡àa=4£¬f£¨x£©=x2-4x+4£¬
¡àSn=n2-4n+4£¬
¡àan+1=Sn+1-Sn
=£¨n+1£©2-4£¨n+1£©+4-£¨x2-4x+4£©
=2£¨n+1£©-5£¬
ÓÖ¡ßa1=1-4+4=1²»Âú×ãÉÏʽ£¬
¡àan=$\left\{\begin{array}{l}{1£¬}&{n=1}\\{2n-5£¬}&{n¡Ý2}\end{array}\right.$£¬
¡à$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{£¨2n-5£©£¨2n-3£©}$=$\frac{1}{2}$£¨$\frac{1}{2n-5}$-$\frac{1}{2n-3}$£©£¨n¡Ý2£©£¬
¡à$\sum_{i=1}^{n+2}{\frac{1}{{{a_i}{a_{i+1}}}}}=-1-1+\frac{1}{2}£¨1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+¡­+\frac{1}{2n-1}-\frac{1}{2n+1}£©=-2+\frac{n}{2n+1}$£¨n¡ÊN£©£»
£¨2£©Í¨¹ý£¨1£©¿ÉÖªcn=$\left\{\begin{array}{l}{-3£¬}&{n=1}\\{1-\frac{4}{2n-5}£¬}&{n¡Ý2}\end{array}\right.$£¬
µ±n¡Ý2ʱ£¬Áîcn•cn+1£¼0£¬¼´$\frac{2n-9}{2n-5}$•$\frac{2n-7}{2n-3}$£¼0£¬
½âµÃ£º$\frac{3}{2}$£¼n£¼$\frac{5}{2}$»ò$\frac{7}{2}$£¼n£¼$\frac{9}{2}$£¬
¡àn=2»òn=4£¬
ÓÖ¡ßc1=-3£¬c2=5£¬
¡àµ±n=1ʱ£¬Ò²ÓÐcn•cn+1£¼0£¬
×ÛÉϿɵÃÊýÁÐ{cn}µÄ±äºÅÊýΪ3£®

µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏî¼°Ç°nÏîºÍ£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø