题目内容
2.设Tn是数列{an}的前n项之积,满足Tn=1-an(n∈N*).(1)求证:数列{$\frac{1}{1-{a}_{n}}$}是等差数列并求{an}的通项公式;
(2)设Sn=T${\;}_{{1}^{\;}}$2+T22+…+Tn2,求证:an+1-$\frac{1}{2}$<Sn<an+1-$\frac{1}{3}$.
分析 (1)利用an+1=$\frac{{T}_{n+1}}{{T}_{n}}$、化简整理可知$\frac{1}{1-{a}_{n+1}}$-$\frac{1}{1-{a}_{n}}$=1,进而可知数列{$\frac{1}{1-{a}_{n}}$}是以2为首项、1为公差的等差数列,计算即得结论;
(2)通过(1)可知${T_n}=1-{a_n}=\frac{1}{n+1}(n∈{N^*})$,通过放缩、裂项可知${{T}_{n}}^{2}$=$\frac{1}{(n+1)^{2}}$>$\frac{1}{n+1}$-$\frac{1}{n+2}$、${{T}_{n}}^{2}$=$\frac{4}{4(n+1)^{2}}$<2($\frac{1}{2n+1}$-$\frac{1}{2n+3}$),并项相加、整理即得结论.
解答 证明:(1)易知T1=a1=$\frac{1}{2}$,Tn≠0、an≠1,
∴an+1=$\frac{{T}_{n+1}}{{T}_{n}}$=$\frac{1-{a}_{n+1}}{{1-a}_{n}}$,
整理得:$\frac{{a}_{n+1}}{1-{a}_{n+1}}$=$\frac{1-(1-{a}_{n+1})}{1{-a}_{n+1}}$=$\frac{1}{1-{a}_{n}}$,
即$\frac{1}{1-{a}_{n+1}}$-$\frac{1}{1-{a}_{n}}$=1,
∵$\frac{1}{1-{a}_{1}}$=$\frac{1}{1-\frac{1}{2}}$=2,
∴数列{$\frac{1}{1-{a}_{n}}$}是以2为首项、1为公差的等差数列,
∴$\frac{1}{1-{a}_{n}}$=2+n-1=n+1,
∴an=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$;
(2)由(1)可知${T_n}=1-{a_n}=\frac{1}{n+1}(n∈{N^*})$,
一方面,${{T}_{n}}^{2}$=$\frac{1}{(n+1)^{2}}$>$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
并项相加可知Sn>$\frac{1}{2}$-$\frac{1}{n+2}$=$\frac{n+1}{n+2}$-$\frac{1}{2}$=an+1-$\frac{1}{2}$,
另一方面,${{T}_{n}}^{2}$=$\frac{4}{4(n+1)^{2}}$<$\frac{4}{(2n+1)(2n+3)}$=2($\frac{1}{2n+1}$-$\frac{1}{2n+3}$),
并项相加可知Sn<2($\frac{1}{3}$-$\frac{1}{2n+3}$)<$\frac{2}{3}$-$\frac{1}{n+2}$=$\frac{n+1}{n+2}$-$\frac{1}{3}$=an+1-$\frac{1}{3}$,
综上所述,an+1-$\frac{1}{2}$<Sn<an+1-$\frac{1}{3}$.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
A. | 72 | B. | 90 | C. | 119 | D. | 120 |