题目内容

如图,在直三棱柱ABC-A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:
(1)EF平面ABC;
(2)平面A1FD⊥平面BB1C1C.
证明:(1)因为E,F分别是A1B,A1C的中点,
所以EFBC,又EF?面ABC,BC?面ABC,所以EF平面ABC;
(2)因为直三棱柱ABC-A1B1C1,所以BB1⊥面A1B1C1,BB1⊥A1D,
又A1D⊥B1C,BB1∩B1C=B1,所以A1D⊥面BB1C1C,又A1D?面A1FD,所以平面A1FD⊥平面BB1C1C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网