题目内容
如图,已知PA⊥矩形ABCD所在平面,M、N分别为AB、PC的中点;
(Ⅰ)求证:MN∥平面PAD;
(Ⅱ)求证:MN⊥CD.

(Ⅰ)求证:MN∥平面PAD;
(Ⅱ)求证:MN⊥CD.

证明:(Ⅰ)取的PD中点为E,并连接NE.AE∵M、N分别为AB、PC的中点
∴NE∥CD且NE=
CD,AM∥CD且AM=
CD∴AM∥NE且AM=NE
∴四边形AMNE为平行四边形∴AE∥MN
又∵又AE?在平面PAD,MN?在平面PAD∴A1C∥平面BDE.
∴MN∥平面PAD(4分)
(Ⅱ)证明:∵PA⊥矩形ABCD∴PA⊥CD又
∵四边形ABCD为矩形∴AD⊥CD
∴CD⊥平面PAD
又∵AE?在平面PAD∴CD⊥AE
再∵AE∥MN
∴MN⊥CD

∴NE∥CD且NE=
1 |
2 |
1 |
2 |
∴四边形AMNE为平行四边形∴AE∥MN
又∵又AE?在平面PAD,MN?在平面PAD∴A1C∥平面BDE.
∴MN∥平面PAD(4分)
(Ⅱ)证明:∵PA⊥矩形ABCD∴PA⊥CD又
∵四边形ABCD为矩形∴AD⊥CD
∴CD⊥平面PAD
又∵AE?在平面PAD∴CD⊥AE
再∵AE∥MN
∴MN⊥CD

练习册系列答案
相关题目