题目内容
(本小题满分16分)
对于函数y=
,x∈(0,
,如果a,b,c是一个三角形的三边长,那么
,
,
也是一个三角形的三边长, 则称函数
为“保三角形函数”.
对于函数y=
,x∈
,
,如果a,b,c是任意的非负实数,都有
,
,
是一个三角形的三边长,则称函数
为“恒三角形函数”.
(1)判断三个函数“
=x,
=
,
=
(定义域均为x∈(0,
)”中,那些是“保三角形函数”?请说明理由;
(2)若函数
=
,x∈
,
是“恒三角形函数”,试求实数k的取值范围;
(3)如果函数
是定义在(0,
上的周期函数,且值域也为(0,
,试证明:
既不是“恒三角形函数”,也不是“保三角形函数”.
对于函数y=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146777265.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146793234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146824270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146839270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146855264.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146777265.gif)
对于函数y=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146980215.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146793234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147011269.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147027281.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147042265.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
(1)判断三个函数“
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147089259.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147151257.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147183240.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147198253.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147229225.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146793234.gif)
(2)若函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147276528.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146980215.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146793234.gif)
(3)如果函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147323365.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146793234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146793234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147323365.gif)
解析:(1)对于
=x,它在(0,
上是增函数,不妨设a≤b≤c,则
≤
≤
,因为a+b>c,所以
+
=a+b>c=
,故
是“保三角形函数”.
对于
=
,它在(0,
上是增函数,,不妨设a≤b≤c,则
≤
≤
,因为a+b>c,所以
+
=
+
=
>
>
=
,故
是“保三角形函数”.
对于
=
,取a=3,b=3,c=5,显然a,b,c是一个三角形的三边长,但因为
+
=
<
=
,所以
,
,
不是三角形的三边长,故
不是“保三角形函数”.
(2)解法1:因为
=1+
,所以当x=0时,
=1;当x>0时,
=1+
.
①当k=-1时,因为
=1,适合题意.
②当k>-1时,因为
=1+
≤1+
=k+2,所以
∈
,
.从而当k>
-1时,
∈
,
.由1+1>k+2,得k<0,所以-1<k<0.
③当k<-1时,因为
=1+
≥1+
=k+2,所以
∈
,
,从而当k>-1时,所以
∈
,
.由
得,k>
,所以
<k<-1.
综上所述,所求k的取值范围是(
,0).
解法2:因为
=
=
,
①当k=-1时,因为
=1,适合题意.
②当k>-1时,可知
在
,
上单调递增,在
,
上单调递减,而
=1,
=k+2,且当x>1时,
>1,所以此时
∈
,
.
③当k<-1时,可知
在
,
上单调递减,在
,
上单调递增,而
=1,
=k+2,且当x>1时,
<1,所以此时
∈
,
.
(以下同解法1)
(3)①因为
的值域是(0,
,所以存在正实数a,b,c,使得
=1,
=1,
=2,显然这样的
,
,
不是一个三角形的三边长.
故
不是“恒三角形函数”.
②因为
的最小正周期为T(T>0),令a=b=m+kT,c=n,其中k∈
,且k>
,则a+b>c,又显然b+c>a,c+a>b,所以a,b,c是一个三角形的三边长.
但因为
=
=
=1,
=
=2,所以
,
,
不是一个三角形的三边长.
故
也不是“保三角形函数”.
(说明:也可以先证
不是“保三角形函数”,然后根据此知
也不是“恒三角形函数”.)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147089259.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146793234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147479262.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147495259.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147510254.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147479262.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147495259.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147510254.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147089259.gif)
对于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147151257.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147183240.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146793234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148431265.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148462367.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148477253.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148431265.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148462367.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148524253.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148540246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148571554.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148587353.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148602239.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148477253.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147151257.gif)
对于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147198253.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147229225.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148680266.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148696265.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148711334.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148743248.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148758255.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148680266.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148696265.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182148758255.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147198253.gif)
(2)解法1:因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149023526.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149086368.gif)
①当k=-1时,因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
②当k>-1时,因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149086368.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149226570.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149632204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149647259.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149226570.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149694149.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149647259.gif)
③当k<-1时,因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149086368.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149226570.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149850263.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149866204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149850263.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149913154.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149928788.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149944228.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149944228.gif)
综上所述,所求k的取值范围是(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149944228.gif)
解法2:因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149991383.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231821500061065.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182150022764.gif)
①当k=-1时,因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
②当k>-1时,可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146980215.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149866204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149632204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146793234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182150147278.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182150271261.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149694149.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149647259.gif)
③当k<-1时,可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146980215.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149866204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149632204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146793234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182150147278.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182150271261.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146886274.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149850263.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182149913154.gif)
(以下同解法1)
(3)①因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147323365.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182146793234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182151083369.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182151098370.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182151114258.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182151083369.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182151098370.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182151114258.gif)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147323365.gif)
②因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147323365.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182151285223.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182151301441.gif)
但因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182151083369.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182151098370.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182151348386.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182151114258.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182151660367.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182151083369.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182151098370.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182151114258.gif)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147323365.gif)
(说明:也可以先证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147323365.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823182147323365.gif)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目