搜索
题目内容
某市原来居民用电价为0.52元/kw·h,换装分时电表后,峰时段(早上八点到晚上九点)的电价0.55元/kw·h ,谷时段(晚上九点到次日早上八点)的电价为0.35元/kw·h.对于一个平均每月用电量为200kw·h 的家庭,换装分时电表后,每月节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为 ( )
A.
B.
C.
D.
试题答案
相关练习册答案
C
略
练习册系列答案
新世界新假期吉林大学出版社系列答案
暑假作业新疆教育出版社系列答案
新世界新假期新世界出版社系列答案
创新学习暑假作业东北师范大学出版社系列答案
暑假作业长江出版社系列答案
义务教育课标教材暑假作业甘肃教育出版社系列答案
快乐暑假河北科学技术出版社系列答案
复习大本营期末假期复习一本通暑假系列答案
智多星创新达标快乐暑假新疆美术摄影出版社系列答案
快乐假期暑假作业内蒙古人民出版社系列答案
相关题目
(本小题满分16分)
对于函数y=
,x∈(0,
,如果a,b,c是一个三角形的三边长,那么
,
,
也是一个三角形的三边长, 则称函数
为“保三角形函数”.
对于函数y=
,x∈
,
,如果a,b,c是任意的非负实数,都有
,
,
是一个三角形的三边长,则称函数
为“恒三角形函数”.
(1)判断三个函数“
=x,
=
,
=
(定义域均为x∈(0,
)”中,那些是“保三角形函数”?请说明理由;
(2)若函数
=
,x∈
,
是“恒三角形函数”,试求实数k的取值范围;
(3)如果函数
是定义在(0,
上的周期函数,且值域也为(0,
,试证明:
既不是“恒三角形函数”,也不是“保三角形函数”.
对于定义域为
的函数
,若有常数M,使得对任意的
,存在唯一的
满足等式
,则称M为函数
f (x)的“均值”.
(1)判断1是否为函数
≤
≤
的“均值”,请说明理由;
(2)若函数
为常数)存在“均值”,求实数a的取值范围;
(3)若函数
是单调函数,且其值域为区间I.试探究函数
的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).
说明:对于(3),将根据结论的完整性与一般性程度给予不同的评分
已设
是函数
的反函数,若
,则f(a+b)的值为
A.1
B.2
C.3
D.
已知函数
,函数
(a>0),若存在
,使得
成立,则实数
的取值范围是( )
A.
B.
C.
D.
方程的解集为
用列举法表示为____________.
关于
x
的方程
有解,则
m
的取值范围是
A.
B.
C.
D.
已知函数
, 则
_____________.
(本题满分12分)
设函数
.
(1)判断函数
的奇偶性;
(2)判断函数
在
上增减性,并进行证明;
(3)若
时,不等式
恒成立,求实数
的取值范围.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总