题目内容

【题目】在△ABC中,角A,B,C的所对的边分别为a,b,c,且a2+b2=ab+c2
(Ⅰ) 求tan(C﹣ )的值;
(Ⅱ) 若c= ,求SABC的最大值.

【答案】解:(Ⅰ)∵a2+b2=ab+c2 , a2+b2﹣c2=ab,
∴cosC= =
∵C为△ABC内角,
∴C=
则tan(C﹣ )=tan( )= =2﹣
(Ⅱ)由ab+3=a2+b2≥2ab,得ab≤3,
∵SABC= absinC= ab,
∴SABC
当且仅当a=b= 时“=”成立,
则SABC的最大值是
【解析】(Ⅰ) 利用余弦定理表示出cosC,将已知等式变形后代入求出cosC的值,确定出C的度数,代入tan(C﹣ )计算即可求出值;(Ⅱ)把c的值代入已知等式变形,利用基本不等式求出ab的最大值,再由sinC的值,即可求出三角形ABC面积的最大值.
【考点精析】关于本题考查的正弦定理的定义和余弦定理的定义,需要了解正弦定理:;余弦定理:;;才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网