题目内容

17.已知函数f(x)=1212x2-2lnx,求:
(1)此函数的单调区间;
(2)此函数图象在x=2处的切线方程.

分析 (1)求出函数的导数,令导数大于0,可得增区间,令导数小于0,可得减区间;
(2)求出导数,求得切线的斜率和切点,由点斜式方程,可得切线方程.

解答 解:(1)函数f(x)=1212x2-2lnx的导数为f′(x)=x-2x2x(x>0),
当x>22时,f′(x)>0,f(x)递增;
当0<x<22时,f′(x)<0,f(x)递减.
则f(x)的增区间为(22,+∞),减区间为(0,22);
(2)f′(x)=x-2x2x(x>0),则f′(2)=2-1=1,
则切线的斜率为k=1,切点为(2,2-2ln2),
即有切线方程为y-2+2ln2=x-2,
即为x-y-2ln2=0.

点评 本题考查导数的运用:求切线方程和单调区间,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网