题目内容
17.已知点M(2,3),点P在y轴上运动,点Q在圆C:(x-1)2+(y+2)2=4上运动,则|$\overrightarrow{MP}$+$\overrightarrow{MQ}$|的最小值为3.分析 利用圆的参数方程,结合向量的运算,可得|$\overrightarrow{MP}$+$\overrightarrow{MQ}$|2=(2cosθ-5)2+(2sinθ-6+a)2,几何意义是A(2cosθ-5,2sinθ-6),与B(0,-a)之间距离的平方,即可得出结论.
解答 解:根据圆的参数方程,设Q(1+2cosθ,-2+2sinθ),P(0,a),
∵M(3,2),∴$\overrightarrow{MP}$=(-3,a-2),$\overrightarrow{MQ}$=(2cosθ-2,2sinθ-4),
∴$\overrightarrow{MP}$+$\overrightarrow{MQ}$=(2cosθ-5,2sinθ-6+a),
∴|$\overrightarrow{MP}$+$\overrightarrow{MQ}$|2=(2cosθ-5)2+(2sinθ-6+a)2,
几何意义是A(2cosθ-5,2sinθ-6),与B(0,-a)之间距离的平方,
显然,动点A在圆(x+5)2+(y+6)2=4上,动点B在y轴上,
∴当A(-3,-6),B(0,-6)时,B到A的距离取得最小值3,此时a=6,θ=0,
∴|$\overrightarrow{MP}$+$\overrightarrow{MQ}$|的最小值为3.
点评 本题考查圆的方程,考查向量知识的运用,考查学生分析解决问题的能力,正确运用圆的参数方程是关键.
练习册系列答案
相关题目
8.已知a>0,b>0,且a+b>2,则$\frac{1+b}{a}$与$\frac{1+a}{b}$两数应满足( )
A. | 都大于2 | B. | 都小于2 | C. | 至少有一个小于2 | D. | 至少有一个大于2 |
5.已知关于等腰三角形ABC的周长为10,且底边长y关于腰长x的函数关系式为y=10-2x,面积S关于腰长x的函数关系式为S=$\frac{1}{2}$y$\sqrt{{x}^{2}-(\frac{y}{2})^{2}}$,则S的定义域是( )
A. | R | B. | (0,10) | C. | (0,5) | D. | ($\frac{5}{2}$,5) |
6.在△ABC中,下列关系一定成立的是( )
A. | a>bsinA | B. | a=bsinA | C. | a<bsinA | D. | a≥bsinA |