题目内容
【题目】如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角∠CAD=60°.
(1)求BC的长度;
(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?
【答案】(1);(2)当BP为cm时,α+β取得最小值.
【解析】
(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,根据得到,解得答案.
(2)设BP=t,则,故,设,求导得到函数单调性,得到最值.
(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,
则,
化简得,解之得,或(舍),
(2)设BP=t,则,
,
设,,
令f'(t)=0,因为,得,
当时,f'(t)<0,f(t)是减函数;
当时,f'(t)>0,f(t)是增函数,
所以,当时,f(t)取得最小值,即tan(α+β)取得最小值,
因为恒成立,所以f(t)<0,
所以tan(α+β)<0,,
因为y=tanx在上是增函数,所以当时,α+β取得最小值.
【题目】某小学六年级学生的进行一分钟跳绳检测,现一班二班各有50人,根据检测结果绘出了一班的频数分布表和二班的频率分布直方图.
一班检测结果频数分布表:
跳绳个数区间 | |||||
频数 | 7 | 13 | 20 | 8 | 2 |
(1)根据给出的图表估计一班和二班检测结果的中位数(结果保留两位小数);
(2)跳绳个数不小于100个为优秀,填写下面2×2列联表,并根据列联表判断是否有95%的把握认为检测结果是否优秀与班级有关.
一班 | 二班 | 合计 | |
优秀 | |||
不优秀 | |||
合计 |
参考公式及数据:,
0.100 | 0.050 | 0.010 | |
2.706 | 3.841 | 6.635 |
【题目】某大型娱乐场有两种型号的水上摩托,管理人员为了了解水上摩托的使用情况及给娱乐城带来的经济收入情况,对该场所最近6年水上摩托的使用情况进行了统计,得到相关数据如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代码x | 1 | 2 | 3 | 4 | 5 | 6 |
使用率 | 11 | 13 | 16 | 15 | 20 | 21 |
(Ⅰ)请根据以上数据,用最小二乘法求水上摩托使用率关于年份代码的线性回归方程,并预测该娱乐场2019年水上摩托的使用率;
(Ⅱ)随着生活水平的提高,外出旅游的老百姓越来越多,该娱乐场根据自身发展需求,准备重新进购一批水上摩托,其型号主要是目前使用的Ⅰ型、Ⅱ型两种,每辆价格分别为1万元、万元.根据以往经验,每辆水上摩托的的使用年限不超过四年.娱乐场管理部对已经淘汰的两款水上摩托的使用情况分别抽取了50辆进行统计,使用年限如条形图所示:
已知每辆水上摩托从购入到淘汰平均年收益是万元,若用频率作为概率,以每辆水上摩托纯利润(纯利润=收益-购买成本)的期望值为参考值,则该娱乐场的负责人应选哪种型号的水上摩托?
附:线性回归方程为,,
参考数据: