ÌâÄ¿ÄÚÈÝ
12£®ÒÑ֪ƽÃæÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬$\overrightarrow{a}$=£¨$\sqrt{3}$£¬1£©£¬|$\overrightarrow{b}$|=1£¬|$\overrightarrow{a}$+2$\overrightarrow{b}$|=2$\sqrt{3}$£¬Ôò$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄ¼Ð½Ç´óСΪ$\frac{¦Ð}{3}$£®·ÖÎö ½«|$\overrightarrow{a}$+2$\overrightarrow{b}$|=2$\sqrt{3}$Á½±ßƽ·½£¬Õ¹¿ªÇó³öÁ½¸öÏòÁ¿µÄÊýÁ¿»ý£¬È»ºóÇó¼Ð½Ç£®
½â´ð ½â£ºÓÉÒÑÖª$\overrightarrow{a}$=£¨$\sqrt{3}$£¬1£©£¬|$\overrightarrow{b}$|=1£¬|$\overrightarrow{a}$+2$\overrightarrow{b}$|=2$\sqrt{3}$£¬µÃ|$\overrightarrow{a}$+2$\overrightarrow{b}$|2=12£¬
ËùÒÔ${\overrightarrow{a}}^{2}+4{\overrightarrow{b}}^{2}+4\overrightarrow{a}•\overrightarrow{b}$=12£¬ËùÒÔ4+4+4$\overrightarrow{a}•\overrightarrow{b}$=12£¬½âµÃ$\overrightarrow{a}•\overrightarrow{b}$=1£¬ËùÒÔ$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄ¼Ð½ÇµÄÓàÏÒֵΪ$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}=\frac{1}{2}$£¬
ËùÒÔ$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄ¼Ð½Ç´óСΪ$\frac{¦Ð}{3}$£®
¹Ê´ð°¸Îª£º$\frac{¦Ð}{3}$£®
µãÆÀ ±¾Ì⿼²éÁËÏòÁ¿µÄÊýÁ¿»ý¹«Ê½µÄÔËÓÃÒÔ¼°ÏòÁ¿Ä£µÄƽ·½ÓëÏòÁ¿Æ½·½ÏàµÈµÄÔËÓã»ÊôÓÚ¾³£¿¼²éÌâÐÍ£®
A£® | 1 | B£® | -$\frac{5}{7}$ | C£® | $\frac{5}{7}$ | D£® | -1 |
A£® | lnx+cosx | B£® | lnx-cosx | C£® | ex+cosx | D£® | ex-cosx |