题目内容

【题目】已知抛物线 : 过点的直线交抛物线两点,设

(1)若点 关于轴的对称点为,求证:直线经过抛物线 的焦点

(2)若求当最大时,直线的方程.

【答案】(1)证明见解析.

(2).

【解析】试题分析:(1)设出P和Q的坐标,根据P和M关于x轴对称表示出M的坐标,利用设出的坐标表示出,根据,化简即可得到P和Q的横坐标,然后由抛物线的方程找出焦点F的坐标,然后利用M,F和Q的坐标表示出向量,利用刚才化简的式子及求出的横坐标代入即可得到,所以得到直线MQ过F点;(2)由第一问求得的P和Q的横坐标相乘等于1,由y12﹣y22=16x1x2=16,y1y20,得到y1y2的值,利用两点间的距离公式表示出|PQ|2,然后把P和Q的横坐标及得到的y1y2的值及x1x2的值分别代入得到关于λ的关系式,配方后利用λ的范围求出λ+的范围,即可求出λ+的最大值,让其等于最大值解出此时λ的值,把λ的值代入关于λ的关系式即可求出|PQ|2的最大值,即得到|PQ|最大值,并利用λ的值求出此时P和Q两点的坐标,根据两点的坐标即可写出直线PQ的方程.

详解:

(1)设

由抛物线C:得到F(1,0)

直线MQ经过抛物线C的焦点F;

(2)由(1)知

时, 有最大值,则的最大值为

此时

则直线的方程为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网