题目内容
【题目】设p:f(x)=ex+lnx+2x2+mx+1在(0,+∞)上单调递增,q:m≥﹣5,则p是q的条件.
【答案】必要不充分
【解析】解:由题意得f′(x)=ex+ +4x+m,∵f(x)=ex+lnx+2x2+mx+1在(0,+∞)内单调递增,
∴f′(x)≥0,即ex+ +4x+m≥0在定义域内恒成立,
由于 +4x≥4,当且仅当 =4x,即x= 时等号成立,
故对任意的x∈(0,+∞),必有ex+ +4x>5
∴m≥﹣ex﹣ ﹣4x不能得出m≥﹣5
但当m≥﹣5时,必有ex+ +4x+m≥0成立,即f′(x)≥0在x∈(0,+∞)上成立
∴p不是q的充分条件,p是q的必要条件,即p是q的必要不充分条件
所以答案是:必要不充分
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.
【题目】为了解学生的课外阅读时间情况,某学校随机抽取了50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:
阅读时间 | [0,20) | [20,40) | [40,60) | [60,80) | [80,100) | [100,120] |
人数 | 8 | 10 | 12 | 11 | 7 | 2 |
若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条形图.
(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的中点值作为代表);
(2)根据已知条件完成下面的2×2列联表,并判断是否有99%的把握认为“阅读达人”跟性别有关?
男生 | 女生 | 总计 | |
阅读达人 | |||
非阅读达人 | |||
总计 |
附:参考公式,其中n=a+b+c+d.
临界值表:
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
【题目】近年空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对心肺疾病入院的人进行问卷调查,得到了如下的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | A | ||
女 | |||
合计 | B |
(1)根据已知条件求出上面的列联表中的A和B;用分层抽样的方法在患心肺疾病的人群中抽人,其中男性抽多少人?
(2)为了研究心肺疾病是否与性别有关,请计算出统计量,并说明是否有的把握认为心肺疾病与性别有关?
下面的临界值表供参考:
参考公式: ,其中.