题目内容
【题目】有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以在1,2,3,4,5,6点中任选一个,并押上赌注元,然后掷1颗骰子,连续掷3次,若你所押的点数在3次掷骰子过程中出现1次,2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收.
(1)求掷3次骰子,至少出现1次为5点的概率;
(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.
【答案】(1);(2)见解析
【解析】
(1)掷3次骰子,至少出现1次为5点的对立事件是3次都没有出现5点,根据对立事件的性质,能求出掷3次骰子,至少出现1次为5点的概率.
(2)试玩游戏,设获利ξ元,则ξ的可能取值为m,2m,3m,-m,分别求出相应的概率,由此能求出Eξ= <0,建议大家不要尝试
(1)根据对立事件的性质,所求概率为.
(2)试玩游戏,设获利元,则的可能取值为,且
所以.
显然,因此建议大家不要尝试.
练习册系列答案
相关题目
【题目】有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
优秀 | 非优秀 | 总计 | |
甲班 | 10 | ||
乙班 | 30 | ||
总计 | 105 |
已知在全部105人中随机抽取1人为优秀的概率为.
(1)请完成上面的列联表;(把列联表自己画到答题卡上)
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”?
参考公式:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |