题目内容
【题目】为了解学生的课外阅读时间情况,某学校随机抽取了50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:
阅读时间 | [0,20) | [20,40) | [40,60) | [60,80) | [80,100) | [100,120] |
人数 | 8 | 10 | 12 | 11 | 7 | 2 |
若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条形图.
(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的中点值作为代表);
(2)根据已知条件完成下面的2×2列联表,并判断是否有99%的把握认为“阅读达人”跟性别有关?
男生 | 女生 | 总计 | |
阅读达人 | |||
非阅读达人 | |||
总计 |
附:参考公式,其中n=a+b+c+d.
临界值表:
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
【答案】(1)52分;
(2) 没有99%的把握认为“阅读达人”跟性别有关.
【解析】
(1)由题意求出该校学生的每天平均阅读时间;
(2)由频数分布表结合等高条形图作出列联表,计算观测值,对照临界值得出结论.
(1)该校学生的每天平均阅读时间为:
=1.6+6+12+15.4+12.6+4.4
=52(分);
(2)由频数分布表得,“阅读达人”的人数是11+7+2=20人,
根据等高条形图作出2×2列联表如下:
男生 | 女生 | 总计 | |
阅读达人 | 6 | 14 | 20 |
非阅读达人 | 18 | 12 | 30 |
总计 | 24 | 26 | 50 |
计算,
由于4.327<6.635,故没有99%的把握认为“阅读达人”跟性别有关.
练习册系列答案
相关题目