题目内容
【题目】设函数是定义在上的可导函数,其导函数为,且有,则不等式 的解集为
A. B. C. D.
【答案】B
【解析】分析:根据题意,设g(x)=x2f(x),x<0,求出导数,分析可得g′(x)≤0,则函数g(x)在区间(﹣∞,0)上为减函数,结合函数g(x)的定义域分析可得:原不等式等价于,解可得x的取值范围,即可得答案.
详解:根据题意,设g(x)=x2f(x),x<0,
其导数g′(x)=[x2f(x)]′=2xf(x)+x2f′(x)=x(2f(x)+xf′(x)),
又由2f(x)+xf′(x)>x2≥0,且x<0,
则g′(x)≤0,则函数g(x)在区间(﹣∞,0)上为减函数,
(x+2018)2f(x+2018)﹣4f(﹣2)>0
(x+2018)2f(x+2018)>(﹣2)2f(﹣2)g(x+2018)>g(﹣2),
又由函数g(x)在区间(﹣∞,0)上为减函数,
则有,
解可得:x<﹣2020,
即不等式(x+2018)2f(x+2018)﹣4f(﹣2)>0的解集为(﹣∞,﹣2020);
故选:B.
【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:
超过 | 不超过 | |
第一种生产方式 | ||
第二种生产方式 |
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附:,