题目内容
【题目】已知数列各项均为正数,为其前项的和,且成等差数列.
(1)写出、、的值,并猜想数列的通项公式;
(2)证明(1)中的猜想;
(3)设,为数列的前项和.若对于任意,都有,求实数的值.
【答案】(1),,,;(2)详见解析;(3).
【解析】
(1)代入,求出,,,猜想出即可;
(2)利用等差数列的定义证明即可;
(3)由(2)知,,因为,都是整数,所以对于任意,都是整数,进而是整数,所以,,此时,因为的任意性,不妨设,求出即可.
(1)解:由已知,
所以,,,
猜想
证明(2)当时,,
所以
得,
因为,所以
数列为等差数列,又由(1),
所以
(3)解由(2)知,.
若,则,
因为,都是整数,所以对于任意,都是整数,进而是整数
所以,,此时,
设,则,所以或2
①当时,对于任意,
②当时,对于任意,
所以实数取值的集合为
【题目】过椭圆的左顶点作斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知.
(1)求椭圆的离心率;
(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.
【题目】已知a R, a0,函数 f (x) eax1 ax ,其中常数e .
(1)求 f (x) 的最小值;
(2)当a ≥1时,求证:对任意 x0 ,都有 xf (x) ≥ 2ln x 1 ax2.
【题目】某农场为了提高某品种水稻的产量,进行良种优选,在同一试验田中分两块种植了甲乙两种水稻.为了比较甲乙两种水稻的产量,现从甲乙两种水稻中各随机选取20株成熟水稻.根据每株水稻颗粒的重量(单位:克)绘制了如下茎叶图:
(1)根据茎叶图判断哪种水稻的产量更高?并说明理由;
(2)求40株水稻颗粒重量的中位数,并将重量超过和不超过的水稻株数填入下面的列联表:
超过 | 不超过 | |
甲种水稻 | ||
乙种水稻 |
(3)根据(2)中的列联表,能否有的把握认为两种水稻的产量有差异?附:;
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |