题目内容
【题目】已知a R, a0,函数 f (x) eax1 ax ,其中常数e .
(1)求 f (x) 的最小值;
(2)当a ≥1时,求证:对任意 x0 ,都有 xf (x) ≥ 2ln x 1 ax2.
【答案】(1)0;(2)证明见详解.
【解析】
(1)求导,对函数的单调性进行讨论,从而求得最小值;
(2)将不等式恒成问题,进行转换,结合(1)中的结论,构造新的函数,将问题转换为最值的问题即可.
(1)因为,则,
故为R上的增函数,令,解得
故当,单调递减;
当,单调递增,
则
故函数的最小值为0.
(2)证明:要证明xf (x) ≥ 2ln x 1
等价于证明
由(1)可知:,即
因为,故
故等价于证明
即
令,即证恒成立.
又
令,解得
故当,单调递减;
当,单调递增;
故
有因为,故
故即证.
即对任意 x0 ,都有 xf (x) ≥ 2ln x 1 ax2.
【题目】某校实行选科走班制度,张毅同学的选择是物理生物政治这三科,且物理在 A 层班级,生物在 B 层班级,该校周一上午课程安排如下表所示,张毅选择三个科目的课各上一节, 另外一节上自习,则他不同的选课方法有( )
第一节 | 第二节 | 第三节 | 第四节 |
地理 B 层 2 班 | 化学 A 层 3 班 | 地理 A 层 1 班 | 化学 A 层 4 班 |
生物 A 层 1 班 | 化学 B 层 2 班 | 生物 B 层 2 班 | 历史 B 层 1 班 |
物理 A 层 1 班 | 生物 A 层 3 班 | 物理 A 层 2 班 | 生物 A 层 4 班 |
物理 B 层 2 班 | 生物 B 层 1 班 | 物理 B 层 1 班 | 物理 A 层 4 班 |
政治 1 班 | 物理 A 层 3 班 | 政治 2 班 | 政治 3 班 |
A.8 种B.10 种C.12 种D.14 种
【题目】某学校为了解学生假期参与志愿服务活动的情况,随机调查了名男生,名女生,得到他们一周参与志愿服务活动时间的统计数据如右表(单位:人):
超过小时 | 不超过小时 | |
男 | ||
女 |
(1)能否有的把握认为该校学生一周参与志愿服务活动时间是否超过小时与性别有关?
(2)以这名学生参与志愿服务活动时间超过小时的频率作为该事件发生的概率,现从该校学生中随机抽查名学生,试估计这名学生中一周参与志愿服务活动时间超过小时的人数.
附: