题目内容

如图,平面PAD⊥平面ABCD,ABCD为正方形,∠PAD=90°,且PA=AD,E、F分别是线段PA、CD的中点.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求EF和平面ABCD所成的角α;
(Ⅲ)求异面直线EF与BD所成的角β.
解(Ⅰ)证明:由已知PA⊥AD,AB⊥AD,
所以∠PAB为平面PAD与平面ABCD所成二面角的平面角,
由已知:平面PAD⊥平面ABCD,得PA⊥AB
又AB?平面ABCD,AD?平面ABCD,且AB与AD相交
∴PA⊥平面ABCD.
(Ⅱ)连接AF,则∠AFE即为α,
在△AFE中,可求得α=arctan
5
5

(Ⅲ)取BC的中点M,连接EM、FM,则FMBD,
∴∠EFM(或其补角)就是异面直线EF与BD所成的角.
可求得EM=
EA2+AM2
=
6
,同理EF=
6
,又FM=
1
2
BD=
2

∴在△MFE中,cos∠EFM=
EF2+FM2-ME2
2EF•FM
=
3
6

故异面直线EF与BD所成角为arccos
3
6
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网