题目内容
设α、β为两个不同的平面,直线l?α,则“l⊥β”是“α⊥β”成立的( )
A.充分不必要条件 | B.必要不充分条件 |
C.充要条件 | D.既不充分也不必要条件 |
面面平行的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.
因为直线l?α,且l⊥β
所以由判断定理得α⊥β.
所以直线l?α,且l⊥β⇒α⊥β
若α⊥β,直线l?α则直线l⊥β,或直线l∥β,或直线l与平面β相交,或直线l在平面β内.
所以“l⊥β”是“α⊥β”成立的充分不必要条件.
故答案为充分不必要.
因为直线l?α,且l⊥β
所以由判断定理得α⊥β.
所以直线l?α,且l⊥β⇒α⊥β
若α⊥β,直线l?α则直线l⊥β,或直线l∥β,或直线l与平面β相交,或直线l在平面β内.
所以“l⊥β”是“α⊥β”成立的充分不必要条件.
故答案为充分不必要.
练习册系列答案
相关题目