题目内容

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.
(Ⅰ)连接AC,∵BC=CD,AB=AD,
∴AC⊥BD,
又PA⊥平面ABCD,且BD?平面ABCD
∴PA⊥BD
又PA∩AC=A,
∴BD⊥平面PAC
又BD?平面BDP
∴平面PBD⊥平面PAC
(Ⅱ)依题意得∠CBD=∠CDB=30°,
又BC⊥AB,CD⊥AD,
所以∠DBA=∠BDA=60°
又BC=CD=a,
BD=
3
a

∴△ABD是边长为
3
a的正三角形
V=
1
3
(S△BCD+S△ABD)•PA
=
1
3
(
1
2
•BC•CD•sin1200+
1
2
•AD•AB•sin600)•a

=
1
6
(
3
2
a2+
3
2
×3a2)•a=
3
3
a3

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网