题目内容

如图,四棱锥P-ABCD中,PA⊥底面ABCD,PA=2
3
,BC=CD=2,∠ACB=∠ACD=
π
3

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P-BDF的体积.
(Ⅰ)∵BC=CD=2,∴△BCD为等腰三角形,再由 ∠ACB=∠ACD=
π
3
,∴BD⊥AC.
再由PA⊥底面ABCD,可得PA⊥BD.
而PA∩AC=A,故BD⊥平面PAC.
(Ⅱ)∵侧棱PC上的点F满足PF=7FC,
∴三棱锥F-BCD的高是三棱锥P-BCD的高的
1
8

△BCD的面积S△BCD=
1
2
BC•CD•sin∠BCD=
1
2
×2×2×sin
3
=
3

∴三棱锥P-BDF的体积 V=VP-BCD-VF-BCD=
1
3
•S△BCD•PA
-
1
3
•S△BCD
1
8
•PA
=
7
8
×
1
3
•S△BCD•PA

=
7
24
×
3
×2
3
=
7
4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网