题目内容

【题目】已知f(x)是定义在R上的减函数,其导函数f′(x)满足 +x<1,则下列结论正确的是(
A.对于任意x∈R,f(x)<0
B.对于任意x∈R,f(x)>0
C.当且仅当x∈(﹣∞,1),f(x)<0
D.当且仅当x∈(1,+∞),f(x)>0

【答案】B
【解析】解:∵ +x<1,f(x)是定义在R上的减函数,f′(x)<0, ∴f(x)+f′(x)x>f′(x),
∴f(x)+f′(x)(x﹣1)>0,
∴[(x﹣1)f(x)]′>0,
∴函数y=(x﹣1)f(x)在R上单调递增,
而x=1时,y=0,则x<1时,y<0,
当x∈(1,+∞)时,x﹣1>0,故f(x)>0,
又f(x)是定义在R上的减函数,
∴x≤1时,f(x)>0也成立,
∴f(x)>0对任意x∈R成立,
故选:B.
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网