题目内容
【题目】已知p:﹣x2+4x+12≥0,q:x2﹣2x+1﹣m2≤0(m>0).
(Ⅰ)若p是q充分不必要条件,求实数m的取值范围;
(Ⅱ)若“¬p”是“¬q”的充分条件,求实数m的取值范围.
【答案】解:由题知:p为真时,由﹣x2+4x+12≥0得﹣2≤x≤6,
q为真时,由x2﹣2x+1﹣m2≤0(m>0).得1﹣m≤x≤1+m,
令P=[﹣2,6],Q=[1﹣m,1+m],m>0
(Ⅰ)∵p是q的充分不必要条件,∴PQ,
∴ ,等号不能同时取,得 ,解得m≥5,
故p是q充分不必要条件时,m取值范围是[5,+∞)
(Ⅱ)∵“¬p”是“¬q”的充分条件,
∴“p”是“q”的必要条件,
∴QP,∴ ,解得0<m≤3,
∴m的取值范围是(0,3]
【解析】(Ⅰ)求出p,q的等价条件,结合充分不必要条件的定义建立集合关系进行求解即可.(Ⅱ)根据逆否命题的等价性进行转化,结合充分条件和必要条件的定义进行转化解不等式组即可.
练习册系列答案
相关题目
【题目】已知学生的总成绩与数学成绩之间有线性相关关系,下表给出了5名同学在一次考试中的总成绩和数学成绩(单位:分).
学生编号 成绩 | 1 | 2 | 3 | 4 | 5 |
总成绩/x | 482 | 383 | 421 | 364 | 362 |
数学成绩/y | 78 | 65 | 71 | 64 | 61 |
(1)求数学成绩与总成绩的回归直线方程.
(2)根据以上信息,如果一个学生的总成绩为450分,试估计这个学生的数学成绩;
(3)如果另一位学生的数学成绩为92分,试估计其总成绩是多少?