题目内容
7.已知函数f(x)(x∈R)满足f(1)=1,且f′(x)<1,则不等式f(1g2x)<1g2x的解集为( )A. | $({0,\frac{1}{10}})$ | B. | (10,+∞) | C. | $({\frac{1}{10},10})$ | D. | $({0,\frac{1}{10}})∪({10,+∞})$ |
分析 构造函数g(x)=f(x)-x,求函数的导数,利用导数研究函数的单调性,求出不等式f(x)<x的解为x>1,即可得到结论.
解答 解:设g(x)=f(x)-x,
则函数的导数g′(x)=f′(x)-1,
∵f′(x)<1,
∴g′(x)<0,
即函数g(x)为减函数,
∵f(1)=1,
∴g(1)=f(1)-1=1-1=0,
则不等式g(x)<0等价为g(x)<g(1),
则不等式的解为x>1,
即f(x)<x的解为x>1,
∵f(1g2x)<1g2x,
∴由1g2x>1得1gx>1或lgx<-1,
解得x>10或0<x<$\frac{1}{10}$,
故不等式的解集为$({0,\frac{1}{10}})∪({10,+∞})$,
故选:D
点评 本题主要考查不等式的求解,构造函数,求函数的导数,利用函数单调性和导数之间的关系是解决本题的关键.
练习册系列答案
相关题目
17.在等比数列{an}前n项和Sn=5n-1,则a12+a22+a32+…+an2等于( )
A. | (5n-1)2 | B. | 52n-1 | C. | $\frac{2}{3}$(52n+1+1) | D. | $\frac{2}{3}$(52n-1) |
15.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下列联表(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为$\frac{4}{15}$.
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(Ⅲ)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
常喝 | 不常喝 | 合计 | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
合计 | 30 |
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(Ⅲ)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
2.已知点 F 是抛物线 y2=4x的焦点,M、N 是该抛物线上两点,|MF|+|NF|=6,则 MN中点的横坐标为( )
A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 3 |
12.当实数x,y满足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$时,若存在(x,y)使得y≥4-ax成立,则实数a的取值范围是( )
A. | (-∞,$\frac{3}{2}$] | B. | (-∞,$\frac{3}{2}$) | C. | [$\frac{3}{2}$,+∞) | D. | ($\frac{3}{2}$,+∞) |
19.若某几何体的三视图如图所示,则此几何体的体积等于( )
A. | 24 | B. | 30 | C. | 10 | D. | 60 |
17.设全集U=R,A={x|x2<4},B={x|logx7>log37},则A∩(∁UB)是( )
A. | {x|-2<x<1} | B. | {x|x<-2或x≥3} | C. | {x|-2<x≤1} | D. | {x|-2<x<3且x≠1} |