题目内容

2.已知点 F 是抛物线 y2=4x的焦点,M、N 是该抛物线上两点,|MF|+|NF|=6,则 MN中点的横坐标为(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

分析 根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出x1+x2=4,即可求出MN中点的横坐标.

解答 解:∵F是抛物线y2=4x的焦点
∴F(1,0),准线方程x=-1,
设M(x1,y1),N(x2,y2
∴|MF|+|NF|=x1+1+x2+1=6,
解得x1+x2=4,
∴线段MN的中点横坐标为2,
故选:B.

点评 本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网