题目内容
12.当实数x,y满足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$时,若存在(x,y)使得y≥4-ax成立,则实数a的取值范围是( )A. | (-∞,$\frac{3}{2}$] | B. | (-∞,$\frac{3}{2}$) | C. | [$\frac{3}{2}$,+∞) | D. | ($\frac{3}{2}$,+∞) |
分析 由约束条件作出可行域,再由y≥4-ax恒成立,结合可行域内特殊点的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.
解答 解:由约束条件作可行域如图,
联立$\left\{\begin{array}{l}{x-y-1=0}\\{x+2y-4=0}\end{array}\right.$,解得B(2,1),
要使y≥4-ax恒成立,
则1≥4-2a,解得:a≥$\frac{3}{2}$
故选:C.
点评 本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.
练习册系列答案
相关题目
20.设i为虚数单位,若复数z=(m2+2m-8)+(m-2)i是纯虚数,则实数m=( )
A. | 2 | B. | -4或2 | C. | 2或-4 | D. | -4 |
7.已知函数f(x)(x∈R)满足f(1)=1,且f′(x)<1,则不等式f(1g2x)<1g2x的解集为( )
A. | $({0,\frac{1}{10}})$ | B. | (10,+∞) | C. | $({\frac{1}{10},10})$ | D. | $({0,\frac{1}{10}})∪({10,+∞})$ |
2.定义区间(a,b),[a,b),(a,b],[a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如:(1,2)∪[3,5)的长度d=(2-1)+(5-3)=3,用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R,设f(x)=[x]•{x},g(x)=x-1,若用d1,d2,d3分别表示不等式f(x)>g(x),方程f(x)=g(x),不等式f(x)<g(x)解集区间的长度,则当0≤x≤2011时,有( )
A. | )d1=1,d2=2,d3=2008 | B. | )d1=1,d2=1,d3=2009 | ||
C. | )d1=3,d2=5,d3=2003 | D. | )d1=2,d2=3,d3=2006 |