题目内容
13.已知偶函数f(x)是[0,+∞)上单调递减,满足不等式f(2a-1)<f(1),则实数a的取值范围是(-∞,0)∪(1,+∞).分析 根据函数奇偶性和单调性之间的关系进行转化即可.
解答 解:∵偶函数f(x)是[0,+∞)上单调递减,满足不等式f(2a-1)<f(1),
∴不等式等价为f(|2a-1|)<f(1),
即|2a-1|>1,
即2a-1>1或2a-1<-1,
即a>1或a<0,
故答案为:(-∞,0)∪(1,+∞)
点评 本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系,将不等式进行转化是解决本题的关键.
练习册系列答案
相关题目
1.执行如图的程序框图,如果输入的d=0.01,则输出的n=( )
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
8.设函数f(x)是定义在R上的偶函数,对任意x∈R,都有f(x+2)=f(x-2),且当x∈[-2,0]时,f(x)=($\frac{1}{2}$)x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)至少有2个不同的实数根,至多有3个不同的实数根,则a的取值范围是( )
A. | (1,2) | B. | (2,+∞) | C. | $({1,\root{3}{4}})$ | D. | $[{\root{3}{4},2})$ |
5.已知函数f(x)=x3-2x2+2,则下列区间必存在零点的是( )
A. | ($-2,-\frac{3}{2}$) | B. | ($-\frac{3}{2},-1)$ | C. | ($-1,-\frac{1}{2}$) | D. | ($-\frac{1}{2},0$) |
2.已知实数x,y满足条件$\left\{\begin{array}{l}{x+y≤4}\\{y≥x}\\{x≥1}\end{array}\right.$,设Z=$\frac{y}{x+1}$,则Z的取值范围( )
A. | (-∞,$\frac{1}{2}$] | B. | [$\frac{1}{2}$,$\frac{3}{2}$] | C. | [$\frac{3}{2}$,+∞) | D. | (-∞,$\frac{1}{2}$]∪[$\frac{3}{2}$,+∞) |