题目内容

已知函数f(x)=2cosxsin(x+)-sin2x+sinxcosx.
(1)求函数f(x)的单调递减区间;
(2)将函数f(x)的图象沿x轴向右平移m个单位后的图象关于直线x=对称,求m的最小正值.
(1)[kπ+,kπ+],k∈Z
(2)
解:(1)f(x)=2cosx(sinx+cosx)-sin2x+sinxcosx
=sinxcosx+cos2x-sin2x+sinxcosx
=sin2x+cos2x
=2sin(2x+),
+2kπ≤2x+≤2kπ+π,k∈Z,
得kπ+≤x≤kπ+,k∈Z.
故函数f(x)的单调递减区间为[kπ+,kπ+],k∈Z.
(2)y=2sin(2x+)―→y=2sin(2x+-2m),
∵y=2sin(2x+-2m)的图象关于直线x=对称,
∴2·-2m=kπ+ (k∈Z),
∴m=-kπ+(k∈Z),
当k=0时,m的最小正值为
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网