题目内容
【题目】下图为某市2017年2月28天的日空气质量指数折线图.
由中国空气质量在线监测分析平台提供的空气质量指数标准如下:
(1)请根据所给的折线图补全下方的频率分布直方图(并用铅笔涂黑矩形区域),并估算该市2月份空气质量指数监测数据的平均数(保留小数点后一位);
(2)研究人员发现,空气质量指数测评中与燃烧排放的两个项目存在线性相关关系,以为单位,下表给出与的相关数据:
求关于的回归方程,并估计当排放量是时, 的值.
(用最小二乘法求回归方程的系数是, )
【答案】(1)92.9;(2) , .
【解析】试题分析:(1)根据折线图求出频数,从而求出各组频率,除以组距可得纵坐标,进而可补全直方图;(2)由公式,,可得的值,将样本的中心点坐标代入,可得的值,进而得回归方程,将带入回归方程即可得结果.
试题解析:(1) 由折线图可知,空气质量指数为, , , 的频数分别为2,16,8,2,则各组对应的频率分别为, , , , 各小矩形的高分别为.
依此作图如下:
该市2月份空气质量指数监测数据的平均数估计为
.
(2)由表中数据可知,
, , ,
则,
,
∴关于的回归方程为,
当时,解得,
当CO排放量是时,PM2.5的值估计为.
【题目】PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量x(万辆) | 50 | 51 | 54 | 57 | 58 |
PM2.5的浓度y(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
(1)根据上表数据,请在如图坐标系中画出散点图;
(2)根据上表数据,用最小二乘法求出y关于x的线性回归方程 ;(保留2位小数)
(3)若周六同一时间段车流量是25万辆,试根据(2)求出的线性回归方程预测,此时PM2.5的浓度为多少(保留整数)?
参考公式: = , = ﹣ .
【题目】我国的烟花名目繁多,花色品种繁杂.其中“菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂,通过研究,发现该型烟花爆裂时距地面的高度h(单位:米)与时间t(单位:秒)存在函数关系,并得到相关数据如下表:
时间t | 2 | 4 | |
高度h | 10 | 25 | 17 |
( I)根据上表数据,从下列函数中,选取一个函数描述该型烟花爆裂时距地面的高度h与时间t的变化关系:y1=kt+b,y2=at2+bt+c,y3=abt , 确定此函数解析式,并简单说明理由;
( II)利用你选取的函数,判断烟花爆裂的最佳时刻,并求出此时烟花距地面的高度.