题目内容

已知在四棱锥P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
PA=AD=1,AB=2,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF平面PEC;
(Ⅱ)求PC与平面ABCD所成角的正切值;
(Ⅲ)求二面角P-EC-D的正切值.
(Ⅰ)取PC的中点O,连接OF、OE.
∴FODC,且FO=
1
2
DC
∴FOAE
又E是AB的中点.且AB=DC.
∴FO=AE.
∴四边形AEOF是平行四边形.
∴AFOE又OE?平面PEC,AF?平面PEC
∴AF平面PEC
(Ⅱ)连接AC
∵PA⊥平面ABCD,∴∠PCA是直线PC与平面ABCD所成的角
在Rt△PAC中,tan∠PCA=
PA
AC
=
1
5
=
5
5
即直线PC与平面ABCD所成的角正切为
5
5

(Ⅲ)作AM⊥CE,交CE的延长线于M.连接PM,
由三垂线定理,得PM⊥CE
∴∠PMA是二面角P-EC-D的平面角
由△AME△CBE,可得AM=
2
2

tan∠PMA=
PA
AM
=
2

∴二面角P一EC一D的正切为
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网